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FOREWORD

The project discussed in this technical report was performed under

'?i | Grant AFOSR-80-0107 entitled "large-Amplitude Multimode Response of Clamped
{;‘ Rectangular Panels to Acoustic Excitation." This document presents the
B - results of analytical investigation into the behavior of plates acoustically
i )

39 loaded into the large deflection regime. There are two volumes reporting
BN, 8

ﬁg this research effort: Volume I consists of the mathematical formulations
B

- and numerical results; Volume II contains the computer codes. The study was
Y,
i conducted at the Department of Mechanical Engineering and Mechanics, Old
%
jn Dominion University, Norfolk, Virginia. The work was monitored under the
o supervision of Howard F. Wolfe, AFWAL/FIBED, Technical Manager, Acoustics
b

%f and Sonic Fatigue Group, Structural Integrity Branch, Structures and

:%; Dynamics Division, Flight Dynamics Laboratory of the Air Forze Wright Aero-
iL nautical Laboratories, Wright-Patterson AFB, and Dr. Anthony K. Amos,

.'
;‘ AFOSR/NA, Program Administrator, Directorate of Aerospace Sciences, bolling
i
5 AFB,

M
. The author wishes to acknowledge Howard F. Wolfe, Kenneth R. Wentz and
f, Dr. Donald B. Paul for their encouragement and assistance. Also, the con-
bl

.‘Q tinued support of the effort by Dr. Anthony K. Amos made the accomplishment
)
. of this project possible.
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NOMENCLATURE

length and width of plate
integers defined by Equation (14)
generalized damping matrix
function defined by Equation (69)
flexural rigidity

Young's Qodulus

frequency in Hz

displacement functions defined by Equations
(11, 12)

Airy stress function

stress function coefficients defined by Equation
(14)

thickness of plate

integers

functions defined by Equations (25, 26)
generalized stiffnees matrix

mathematical operator defined by Equation (1)
generalized mass matrix

pressure

pressure in normal coordinates

average edge loads defined by Equations (29, 30)
normal coordinate

dimensionless pressure spectral density defined
by Equation (61)
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NOMENCLATURE - CONTINUED

SP(N) spectral density of P(t)
g t t ime
_é u,v | inplane displacements
vvi w lateral deflection
é, ‘ Wan generalized displacements
i . X,y coordinates
% zx(wmn)’ zy(wmn) functions defined by Equations (27, 28)
3 a ‘ . length-to-width ratio, a/b
; B vector function defined by Equations (33, A6-A8,
, B2)
. Y shearing strain
% € normal strain
% 4 damping ratio, c/c,
A u mass parameter defined by Equation (64)
3 v Poisson's ratio
-j p mass density
i g normal stress
§ T shearing stress
§ ¢ normal mode
g w linear frequency in rad/sec
é‘ 2 equivalent linear or nonlinear frequency in rad/sec
E Subscripts
i * b bending component
i EL equivalent linear
f L linear
i o membrane component
3 ix
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SECTION I

INTRODUCTION

- 1. BACKGROUND

Acoustically induced fatigue failures in aircraft and missile operation

> 3

have been a design consideration for over 25 years. The problem was intro-
duced with the advent of the turbo jet engine which produced high intensity
1. acoustic pressure fluctuations on aircraft surfaces. As the engine perform-
ance requirements increased, the intensity of the acoustic pressures in-

creased. Airframe minimum weight requirements resulted in higher stresses

¥

S in structural components. The number of acoustic fatigue failures began to

% grow at a rapid rate until adequa;e design criteria were developed and used

@ in the design process.

: Similar fatigue failures have occurred in other regions of high inten~

jé sity pressure fluctuations. These have occurred in regions of separated
flow, behind protuberances into the flow such as airbrakes, and close to

}é propeller tips. Failures have also occurred from the fluctuating pressure

? induced when bomb bay doors are opened during high speed flight.

3 The oscillating pressures from various noise sources produced a reso-

ii nant response of the structural component such as external skin panels,

:j frames, ribs and spars which results in rapid stress reversals in the struc-
ture. If tnese stresses have sufficient wagnitude, fatigue failures occur.

§ Acoustic fatigue failures have resulted in unacceptable maintenance and

2“ inspection burdens associated with the operation of the aircraft. In some

5 . cases, sonic tatigﬁ. failures have resulted in major redesign efforts of

K aircraft structural components. Therefore, accurate prediction methods are

A3

K
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needed to determine the acoustic fatigue life of structures. Many analyt-
ical and experimental programs to develop sonic fatigue design criteria,
however, have repeatedly shown a poor comparison between analytical and
measured RMS maximum strain (References 1-9). Deviations in excess of 100
perceat are not uncommon. One of the major reasons suspected for the
discrepancy was that the panel response was based on small deflection linear
structural theory, whereas tile test panels respoanded with large deflections
at high sound pressure levels (SPL).

Most receatly, an analytical effort (References 10, 1l1) using a single-
mode approach, and a test program (Reference 12) have demonstrated that the
prediction of panel random response is greatly improved by the inclusion of
large deflection effects in the analysis.

Test results in References 1, 2 and 12 also have shown that there are
more than one mode responding. Multiple modes were also observed by Wolfe
and Wentz (Reference 13) and White (Reference 14) in experimental investiga-
tions on aluminum fuselage panels and carbon fiber-reinforced plastics
(CFRP) plates under acoustic loading. White also showed that the fundamen-
tal mode responded significantly and contributed more than one-half of the
total mean-square strain response; higher modes, up to third or fourth
modes, accouat for 95X or more of the total mean-square strain response. In
order to have an accurate determination of the random response of a
structure, multiple modes should be used in the analysis. This report, Vol-
ume I, presents an analytical effort on lerge-amplitude random response of a
clamped rectangular thin plate subjected to acoustic excitation using multi-
ple (4) modes in the formulation. The developed computer software is

published in Volume II of this document,
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2. OBJECTIVES OF THE INVESTIGATION

The primary aim of this research is to investigate the large-amplitude,

multimodal response of clamped, rectangular, flat, thin panels of uniform

i

if% thickness subjected to broadband, random acoustic excitation. More

:ﬁ% specifically, the following tasks will be performed in accomplishing this

Vg%g‘ . aiw:
*?SS : ' (a) Development of an "quasi-exact" solution procedure for determining

N

i%% the nonlinear response of a clamped rectangular plate to random loading;

ko) (b) Computerization of the colution‘procedure to simplify application |
o) |
.ﬁﬁﬁ to the nonlinear random response problems studied in this investigafion and |
,iﬁﬁ for the convenience of other researchers who wish to use and/or extend this

Eﬁ: work; aad

g%l (c) Determination of the RMS maximum panel deflection, the RMS maximum

g% strain, and the frequencies of vibration of an acoustically excitated clamp-

N, ed plate which will enable the practical utilization for esctimation of sonic

fatigue life.
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SECTION II

MATHEMATICAL FORMULATION AND SOLUTION PROCEDURE

1. GOVERNING EQUATIONS

MAULAAREA A PRR Y SRS N R R FR A ot B R AR

The governing equations of a thin rectangular, isotropic plate undergo-

ing large-deflection motions, neglecting the effacts of both inplane and

rotatory inertia forces, are (References 15, 16)
L(w,F) = Dy + phw, . + 8v,,

- h(F, w

tee ¥ F
yy 'xx

!xstyy -2 F'K)’ waxy)

- p(t) =0

ViF = E(w, =~ W, w, )
Xy xx 'yy

(1)

(2)

where a comma denotes the partial differentiation with respect to the corre-

sponding variable, w 1is the lateral deflection, D

rigidity, p is the mass density, h is the plate thickness,

is the flexural

is the

pressure, E is the Young's modulus, and g ie the viscous damping. The

stress function F is defined by

(3

(4)

(5)
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where L aoy and Toxy are the membrane stresses.

Equations (1) and (2) together with a complete set of boundary condi-
tions, define the problem. These equations are subjected to the usual out-
of-plane boundary conditions required in small deflection theory (zero edge
deflection and slope for clamped edges). In addition, for large deflec-
tions, it is necessary to specify inplane boundary conditions. The inplane
boundary conditions must be specified in terms of a combination of applied
edge load and displacements.

The particular inplane boundary conditions of most interest in the

study of sonic fatigue of structural panels is the one in which the edges

are restrained from movement, that is

u=0 on x = 0 and & (6)

ve=20 ony=0andb (7)

where the plate has a length a, width b, and the origin of the ccordin-
ates is taken at one corner as indicated in Figure 1. The numerical results

presented in the next section are all based on these inplane boundary condi-

tions,

2. SOLUTION

Generally, there are four methods which are used in the analysis of
mulci-degree-of-freedom nonlinear systems under raadom excitations. These
are the Fokker-Planck equation approach, the perturbation approach, the

finite difference approach and the equivalent (statistical or stochastic)
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linearization approach. Application of these methods to panels of complex
configurations were discussed in Reference 4. There have been very faw
attempts at solution of Equations (1) and (2) treating plates under random
loading.

The clavsical approach attempts a direct solution of the diffarential
equations, thereby allowing a reduction in numerical approximations. Tis
approach generaily involves the assumption of a set of global solution
functions which are simple analytically, usually one term (References 10,
11, 17 and 18) and satisfy the geometric boundary conditions. The differen-
tial equatious are then satisfied approximately by use of a Rayliegh-Ritz or
Galerkin procedure. Such an approach allows simple solutions; but since the
shape of the solution functions are predetermined, the accuracy of the pre-
diction is limited by these choices. A complete description of the deflec-
tion shape will not be able to emerge since the shape has been predeter-
mined. A notable exception to the constrained function approach was the
solution procedure developed by Levy (Reference 19) for bending of a simply
supported rectangular plate with large deflections.

Levy's procedure involved the representation of the stress function F
and the lateral deflection function w by double infinite Fourier series.
Such a representation of the solution functions by a complete set of "basic
functions" removes the major limitation of constrained solution functions
present in the earlier solutions. The relationship between the coefficients
of the stress function series and the lateral deflection function series was

determined by direct substitution of the two series into the compatibility

e .

%&: equation and by equating coefficients of like trigonometric terms. The

X

'fﬁ equilibrium equation was then solved by the same procedure of substitution
=

X

2
ﬁ-“

-
--------
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g&%a of the two series for F and w into the equilibrium equation and equating
Qﬁf coefficionts of like trigonometric terms. The result of these operations
;Qéé was an infinite set of simultaneous algebraic equations which were cubic in
;§§ the deflection function coefficients. This set of equations represents a
AE;E complete solution of the large deflection plate bending equations for the
&éy- simply supported rectangular plate. Levy's solution is referred to as an
;ﬁkk "exact" solution by Timoshenko (Reference 15) and other authors. Of course,
gégJ the exact numerical results cannot be obtained (this would require solution
gﬁi of an infinite number of simultaneous equations), but since the series is
i?f complete and the solution convergent, the degree of accuracy of the results
;ﬁ{; depends only on the patience and time of the analyst. Levy's solution pro-

cedure has been very useful to the research community as evidenced by the
many investigators which have made use of and extended his solution to study
various phenomena associated with the large deflection of plates. For
example, Paul (Reference 20) extended Levy's procedure to study large de-

flection behavior of clamped plates under thermal loading. The represent-

ation of the stress function and the plate deflection function which is de-

;g{ veloped herein will also follow the same procedure as Levy and Paul.

8

g-fj The solution will be written in terms of the stress function F and
Y

%ﬁ@‘ the lateral displacement w, with the relationship between these variables
;Fii determined by satisfying the compatibility equation, Equatioan (2). ‘The

-

;j? lateral deflection w is represented by a complete set of functions in the
éfj form of a "Fourier~type'" double series. .
;pi;

538 wix,y,6) = h L Z W (&) £(x) g (y) mm=1,23... (8)
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The functions fm(x) and 3n(y) are chosen to be linearly independent of each

X

,q:‘

Ao other and such that the geometric boundary conditions of zero slope and de-
% flection along the edges of the plate are satisfied exactly, The wmn(t:)

\’): are the generalised displacements which are to be determined. The lateral

boundary conditions are

;.353,, Eagt

gt

é? . v, . 0 onx =0 and a 9)
i

i v, 0 ony =0 and b (10)
X

Y

P!

Vs The functions fm(x) and gn(y) which meet the above requirements are
wAQ given by:

b (m-1) (m+1) |

s - m~Drx) _ m+1)mx

LY fm(x) coa( 2 ) cos( P, ) (11)
? and

ﬁ 8,(y) = cos <_(__rl_-%)_1r_x) - cos (i!‘.‘%)ll) (12)
u

o

gé To help perceive the numerical behavior for the component functions fm(x)
£

&N

?g and gn(y) which make up the series, the first six terms of the series
2

(Equation 8) are shown in Figures 2 through 7. These figures are plotted
with the generalized displacement wmn held constant.

\ . . . . .
Lo Upon examination of the above expression of the lateral deflection, it

R is found that the compatibility equation (Equation 2) can be identically

satisfied if the stress function F is taken in the following form:
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L F_ cos (B%) cos (SEXQ P,q = 0,1,2... (13)
Pq a

Pq
where the constants Px and Py contribute to the membrane stress and will
be discussed in more detail later. Also, it should be noted that the above
form of the stress function implies zero shear stress on the plate bound-
aries. Direct substitution of Equations (8, 11, 12 and 13) into the
compatibility equation Equation (2), performing the required differentia-

tions and multiplications, and equating coefficients of like trigonometric

terms yields the following quadratic relationship between qu and Whn

i qumnkl wﬁn wkl (14)

qumnkl are integers and & = a/b. Derivation of qumnkl can be

found in detail in Reference 20. The calculation of the integers B
pqmnkl

vhere

is accomplished with the aid of a computer program, a listing of which is

presented in Volume II of the report. A tabulation of B for values
pqmnkl

of the subindices p, q, m, n, k and 1 from zero through nine has been

generated, but it is too voluminous to be included in the report. However,

a sample of this tabulation can be found in Reference 20. Substitution of

Equation (14) into Equation (13) yields the following expression for the

stress function in terms of the unknown parameters wmn’

Pyz P x?

F--—r----lr+sh2}:z[
Pq
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BPTX os LY
pgmnkl “ma wkll cos g ¢o8 "%

IIZIZIB
(p2/a + q2a)®> mn k1
P.q - 0,1.2....

m,n,k,l = 1,2,3,... (15)

In the above equation, the Px and Py are determined by applying the in-
plane boundary conditions, and the wmn are determined by solving the re-
maining governing differential Equation (1). |

As stated earlier, the numerical results presented in this study are
based on the case in which the edges are restrained from movement (Equa-
tions 6 and 7). 1In order to apply these inplane boundary conditions,
expressions for the inplane displacement must be developed. Combining the

menbrane strain-displacement relations

- 1.2
Cox " Wt 7T Vi (16)
€ ®mvy, + i w,2 (17)
oy 'y T2 %y
Yoxy = u,y + Vi + w,xw,y (18)

and the membrane strain-stress relations

1
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1
€ oy "E,(!’xx - vr,yy) (20)

and re-arrangsment of the resulting expressions yield

S o
P
ORI

re

ot

B

: 9
' f.' 5 dx = [' ( % (Figy = VF,.,) -:}w,i]dx (21) .
b v o afb - L2
> 55 o=/ [+ (Fre = VFayy) = 7 wi2ldy (22)

where E is the Young's modulus and Vv is the Poisson's ratio.
Performing the indicated differentiation, integration and applying the
in-plane boundary condition (Equations 6, 7) to each of the above equations

respectively yield:

Pa VPa
0=~--24 -—l—E == LW ) (23)

Pb VPb

PR AR
0 it g Iy(whn) (24)

The terms Ix(wmn) and Iy(wmn) in the above equations are defined by

( nin? o
N ccnuem—
Ix wm) 52 I wm zx(wm) (25)
mn “
- h2"2 ) .
Iy(wmn) 55 b o zy(wm> (26)
mn
18
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200 )= [(m+1)2 « (n-l)zlwm‘ - (m+1)2 Wie2,2-0

- (a=1)20 2,20 * 2[(m+1)2 + (u-z)zlwm

- 1y2 - 2Cmel)2
2(m+1) wﬁ+2.n i(m=1) wm-z.n

. ~[(a+1)?2 + (m-1)2y

m,n-2 + (meD)?

m+2 n-2

+(m~1)2 Va-2,n-2 = [(m+1)? + (m—1)2]w n+2

+ (m+1)? w + (m=-1)2y

+2,n+2 m=-2,n+2 (27)

- 2 =1)2 - 2
zy(wmn) [(n+1) o+ (a=1) ]wz-m.n (n+1) w2ﬂn.n+2

~(a-1)%W + 2(D? + (-D2_

2"“ .n-z

- 2(n-1)%w

- 2
2(n+1) wm m,n=2

,n=2

“[@e1)? ¢ (=02, ) o+ (n+1)2 Wom2,042

. +(n~1)2w

n-2,0-2 [(a+1)2 + (n=1)2)W

m+2,n

+(n+1)2u_ + (n-1)2W

2,n m+2,n-2 (28)

19
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where “mn =0 for m or n < 1.

Solving Equations (23) and (24) simultaneously yields the following

expressions for the average adge loads P X and P for the inplane

boundary conditions in which the edges are restrained from movement

W(bl +--Ix) (29)
E v 1
Py--w(‘lx'fg-ly) (30)

With the lateral deflection given by Equation (8) and the stress
function given by Equation (15), the equilibrium equation, Equatioa (1), is

thean satisfied by applying the Bubnov~Galerkin method (Reference 21)

fb J* L (w,P) f8, dxdy = 0 r,s = 1,2,3... (31)
g§§§ Upon substitution of L(w,F) in Equation (31), the equaticns are written
AR as
i
e '3‘ b ra
%{E: ° £ (ph“’tt gt D(w'xxxx * 2"":t:xyy * Yiyyyy) |
—%‘
apnaRtns

"h(F‘yy W|xx + F’xx w'yy " ZF.xy W|xy)"P] frgs dxdy = () "

where r,s = 1,2,3,... (32)

Utilizing the expressions for w, fr’ g, and F (Equations 8, 11, 12

20
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and 15, respectively) aund perforwing the above integrations yield a set of
second order nonlinear differential equations for the generalized displace-

ments with time as the independent variable, and it can be written in matrix

notation as
(K] (&) + [c] (W} + [RI, (W} + {8QW)} = {p(c))} (33)

where [M], ([C] and [K]L are the generalized mass, damping and linear
stiffness matrices, raspectively, and {B(W)} is a vector functiou which is
cubic in the generaliged displacements {W}. The integrations of each of
the terms in Equation (32) are given explicitly in Appendix A. The mass and
linear stiffness matrices can be easily generated from equations (Al) to
(A4).

If the acoustic pressure loading p(t) is stationary Gaussian, is
ergodic and has a zevo mean. Application of the Krylov-Bogoliubov-Caughey

equivalent linearization method (References 22-28) yields an equivalent set

of linearized equations to Equation (33) ae

(] (W} + [c) (W} + (K], + [R]_) (W} = (p(e)} (34)
or

[M] (W} + [c] {W} + [K] {W} = {p(t)} (35)
where [K]EL is the generalized equivalent linear stiffness matrix and

(K] = [KJL + [K]EL' The elements of [K]EL are evaluated from the equationn

(Reference 23)

ey W SN JEERTY 3 F TP VMRS NS wLw w N W =a e W W
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(Kgp)payy = & [23-1;;- ] | (36)

and they are derived and given explicitly in Appendix B, and &[] stands
for the operator of mathematical expectation. The approximate generalized

displacements {W}, computed from the linearized equation, Equation (35),

are also Gaussian and approach stationary because the panel motion is .
stable.
To determine the mean-square generalized displacements wzmn in Equa-

tion (34), an iterative process is introduced. The undasmped linear equation
of Bquation (34) is solved first, which requires the determination of the

eigenvalues and eigenvectors of the undamped linear equation
2 M , - . 37
W (M) (8}, = (K] (9}, (37)

where w, is the linear frequency of vibration, and {¢}j is the normal

mode shape.

Apply a coordinate transformation, from the generalized displacements

to the normal coordinates (4 modes will be used in the analysis, n = 4), by

{w} = [¢]) {q} ném

mxl mxn nxl (38)

' where each column of [¢] is a normal mode {¢}j. The damped linear

equation of Equation (34) becomes

22
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M L9} ¢ Ded () ¢ PRIy (a) = {B(e)) (9

vhere Buy = (417 (M) () (40)

. ted = 01T 1) [o] = 2 Brwd BHY (41)
' PR, = 01T (K] (4] = fu2d MY (42)
e} = 1917 tp) (43)

Bquation (39) is uncoupled in the normal coordinates, the jth row of Equa-

tion (39) is

P,
) . 2 d (44)
. +2L.0,q, +0iq"
AN T,
The mean-square response of modal amplitude is
2" 2
; [ sp(w)luj(w)l dw (45)

where Sp(w) is the spectral density function of the excitation Pj(t), and

the frequency response function is given by

) , ,
Hj (w) Mj(oﬂijt + zicjij) e

23
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For lightly demped (% = e/ec € 0.03) structures, the response curves will
be highly peaked at wj. The integration of Equation (45) can be greatly
simplified if the forcing spectral density function Sp(w) can be consid-~

ered to be constant in the frequency band surrounding the linear resonance

peak wj' 80 that

@« P . | : (47)_

The covariance matrix of the linear generaliszed displacements is

8 (w,)

. P T
W w.T, "? {¢) 5 %-‘J;g OF (48) |

The diagonal terms of [w an kl]L are the mean-square linear generalized

ahp——

displacements wﬁn. This initial estimate of expected value on generalized
displacements now can be used to compute the generalized equivalent linear

stiffness matrix [K]EL through Equation (36) or Equations (B4 to B7). The

undamped linearized equation of Equation (34) is solved again
2 -
nj [le}j ([k], + [KJEL) {¢}J. (49)

where ﬂj is the equivalent linear or nonlinear frequency of vibration, and

LT T e T AR T WK T TR o ol St e | i

- -

»
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(OIj is the associated equivalent linear normal mode. Then Equation (35)

is transformed again to the normal coordinates and it has the form as

MM (@) ¢ Tcd (@) + BRI (g} = (R(e))
in which

MRS = (007 (KD + (R (0) = MA2J MY
The jth row of Equation (50) is

P,
(1) . 2 - —l
I Bk e L Tl

and the displacement covariance matrix is

s.(Q.)
[wumwkll * %' L {¢}j —P—‘l—'{ {O}g
i z.w,0%
1°337)

(50)

(51)

(52)

(53)

The diagonal terms of limnwkll are the mean-square generalized displace-

ments Wﬁn. As the iterative process converges on the iter-th cycle, the

relations

2 % (a2
(qj)iter (qj)iter~1

25
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Badieer ¥ Maniter-1 - (56)

become satisfied. In the numerical results presented in the following
section, coanvergence is considerad achieved when the difference of the RMS

displacements satisfies the relation

(RMS Hmn - (RMS wmn)

)iccr iter=l

(RMS wmn)

< 108 for all m,n (57)
iter

Once the RMS generalized displacements are determined, the RMS deflec-
tion of the panel and the RMS maxinum strain can be determined from BEqua-
tions (8, 19, 20) and the bending strain-displacement relations as presented

in the next section,

In practice, the spectral density is usually given or measured in terms
of the frequency £ in Hertz. To convert the spectral density from the
analytical Sp(w) to practical sp(f), the following relations are used
(Reference 29)

w = 2nf . (58)

sp(w) - sp(f)/zn (59)

The pressure spectral density function Sé(f)/2ﬂ then has the units

26
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(Pa) /s or (psi)2/Hs and the displacement covariance matrix, Equation

(53), beconmes

8
T T~ -5-:: {¢) ----—-- {497 (60)
3 a2 J
§oohufepa

where Sf is a nondimensional forcing spectral deansity parameter defined as

sp(f)
8¢ * . (61)
P2 (n/pp )8/2
and

w - Xg (—-q-) (62)
2 »32 D .
y) A (sggr) (63)
u = M/ph? (64)

The frequency parameters ko and A, and the mass parameter M are all
dimensionless quantities. This nondimensional spectral density parameter of

acoustic pressure excitation Sf will be used for the numerical results

preseated in the next section.

" 3. DEFLECTION AND STRAINS

From Equation (8), the mean-square deflection of the plate is given by

'y ,‘~‘.'..,:.~.'...'. .\‘ se \-:~ ‘.'. ‘- “- s o .» - x ‘(“ig.$\
o . .; :':‘\'a.‘.u.' L’xa.. }\fs‘f:r_ﬁh .C .‘.flf!.
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(--)2-””.“ -

Ll Vi In(x)f (x)gn(y)gl(y) (65)

vhere the averages W W , = ;[anwkll have been determined in Equation
(53).

The mean-square ceater deflection can be obtained from Equation (65)

For a clamped rectangular plate (a » b), the maximum bending strain
occurs at the extreme~fiber (z = % h/2) at the midpoint (x = a/2) of the
long edge and perpendicular (e ) to the long edge. The bending strain at

the extreme-fiber and in the y-direction is

| 2w
or
€ b2 " (n=1)n
DL L€ (O[(n-1)2 cos ~S-TL
h? mn n b
- (n+1)2 cos SEI%!IX.W (67)

The membrane strain in the y~direction, Equations (15, 20, 29 and 30),

in terms of generalized displacements W

mn 18
2
=« Tz (W)
he 8 mn "o y ma
+ LLIIZIZC B W W (68) .
mnklpg P4 pymnkl "mn "kl
28
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.‘\
Ry where

¥ C = n2(vg - p2/a?) cos EEX o8 3%2 (69)
c Pq (lec - qz a)2 a

L
% ‘ The total strain is then given by

p € =€, € (70)
R y oy by

and the mean-square strain beccmes -

¥y T mee ——

2 = g2 2
€2 =2 + 28 [ ] + c3y (71)

7 y oy soy eby

For Gaussian random processes with zero-mean, the generslized displacements

o b
gt ey

follow the relations

Foa

e[wijwklwmn] -0 (72)

E[wijwklwmnwra] " s[wijwkll ¢ [wmnwra]

* E[wi wmn] £ [wklwrl] * E[wijwrs E[wklwmn] (73)

and the BRMS maximum strain can be determined from Equation (71).
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RESILTS AND DISCUSSION
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1. GENERAL COMMENTS
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Since the solution developed in Section II is of the infinite series

PR

e

type, it is iwportant to understand its convergence behavior. The experi-

ence gained in Reference 20 on convergence of the solution for the large

A

o , e . L
e deflection under thermal loading aids in trumrcation of the series in a
A

£y .

Sh rational manner.

The coavergence of the solution is examined through a study of square
and rectangular panels subjected to a normal incidence acoustic impingement.
Since the loading is symmetric, therefore, only symuetric generalized dis-
placements are retained in the transverse deflection function. The partic-
ular generalized displacements that were chosen to be nonzero in the con-

vergence study are shown in Table 1. Numerical results are provided for the

mean-square plate center deflection and the mean-square maximum strain for a
lateral deflection series that varies in size from four, six, ten and to
fﬁgj fifteen terms. The maximum strain occurs at the extreme-fiber (z = £ h/2)
perpendicular to the long edge (cy) and at the midpoint (x = a/2). In
the results presented, the white noise excitation is band-limited with a
frequency bandwidth of 25 Hz to 6,000 Hz as shown in Figure 8, the damping
ratio is assunad to be constant for all four normal modes and Poisson's
ratio is equal to 0.33., The computer program is, however, much more flex-
ible that the spectral density of pressure excitation could be varying slow~
ly in the neighborhood of equivalent linear frequency ﬂj and also the

danping ratios could be different for different normal coordinates.
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TABLE 1. GENERALIZED DISPLACEMENTS FOR CONVERGENCE S'TUDILES.

Number of ternms

Generalized
‘Displacements 4 1] 10 15
| W) X X X X
. ‘ W3 X X X X
W3 1 X X X X
Wa3 X ' X X
I Wis | X X X
Wsy X X X
% W3s X X
3 X X
S 3
1y Wi7 X X
% X
Yz W1 X
» 4 Wss X
jb ‘u wa 7 X
Wr3 X
"! Wig X
o
BE, Wo) X
2, CONVERGENCE OF THE NONLINEAR RANDOM RESPONSE

The coanvergence of the solution technique was examined to determine the

degree of accuracy possible with a highly trancated transverse deflection

function series. The mean-square nondimensional center deflection versus

the nondimensional spectral density parameter S¢ using 4, 6, 10 and 15
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terms in the deflection function for a square and a rectangular (o = 2)
plate are shown in Figures 9 and 10, respectively. It clearly indicates
that a 6-term solution gives accurate results for the nonlinear maximum de-
flaction while a 4-term solution will provide very accurate linear results.
Figures 11 and 12 show the maximum mean-square strain versus the nondimen-
sional pressure spectral density for the square and vectangular (a = 2)
plates, respectively, using 4, 6, 10 and 15 terms in the deflection
function. It can be scen that the convergence of the mean-square strain is
wuch slower as compared with that of the mean-square deflection. More
number of terms, therefore, are needed in the deflection function for accur-
ate determination of strains. Results of maximum mean-square strain based
on small deflection linear theory are also given in the figures. The use of

linear theory would lead to poor estimatioan of panel fatigue life.

3. EFFECTS OF PANEL DAMPING

Figures 13 and 14 show the mean-square nondimensional center deflection
versus the nondimensional spectral density of acoustic pressure excitation
for rectangular panels of length-to-width ratio &« = 1| and 2 with the damp-
ing ratio equal to 0,009, 0.018 and 0.027. Figures 15 and 16 show the
maximum mean-square nondimensional strain versus the nondimensional pressure
spectral density for rectaagular plates of aspect ratios of 1 and 2 with
different panel damping ratios. Ten terms were included in the deflection
function to generate those results shown in Figures 13 through 16. 1t is

clear from the figures that the precise determination of panel damping is

very important,
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SECTION 1V
CONCLUDING REMARKS

A "quasi-exact" analyfical procedure was developed for the prediction
of the nonlinear random response of rigidly clamped rectangular panels sub-
jected to broadband noise excitation. Multiple (4) modes were employed in
the formulation. A computer program hac‘been developed to aid in the
deternination of RM8 center deflection, RMS maximum strain and equivalent
linear frequency at given pressure spectral density of excitation.

The couvergence of the present analytical method was demonstrated
through a detailed study of a square and a rectangular (a = 2) plate under
normal incidence acoustic impingements. Results were presented for both
panelg with the truncated lateral deflection function series of 4, 6, 10 and
15 terms. ‘This study revealed that couvergence is very rapid for the deter-

wination of central deflqction, but much slower in the prediction of
strains. Accurate mean~square deflections can be obtained with the use of
six terms in the deflection function, while it is necessary to consider as
many as 10 or more terms for the accurate determination of the strains.
This computed BRMS strain and equivalent linear frequency, in conjunction
with strain versus cycles to failure (S-N) data, should be used for the
etimation of service life.

In the nunerical examples presented, a constant damping ratio was used
for all excicacibn levels. The total damping includes the acoustic radi-
ation damping, panel edge damping and the material damping in the panel
itself. Nonlinear damping phenomena, however, have been observed in experi-
ments. Strain response data for an aluminum panel of 3.94 cm x 3.94 cm x

0.25 mm at three different overall sound pressure levels (130, 142 and 160
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dB) obtained in Reference 12 are shown in Figure 17. At the low-excitation
levels, the modal responses of the panel can be clearly seen. At the high-
est level, broadening of the response peak due to nonlinear damping is

obgerved. Therefore, more effort is needed to better understand the effects

of nonlinear damping on panel response.
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. b ra  dtw Dha" ab
o 50 =t s, any = 29082
; Y 4 - -
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$le s D (o= D2, J=W Wt ]
- 1) - 1)2 - -
+ (=12 (-1 [wr’. Wegm2 ~Vomg g * "’:—z,.-zl} (A3)
2y 2
\ °1* on 3—-- £, g, dudy = 22
2 & t
o [(c + 2)(q, + 2)wr..-(03 + 2)Wr+z.‘-(cs + 2)(G, + 1)wr_2.° .
-G ¢ 2)"'r.s-rzm(% + (G, + Z)Wr,s-z ¥ wr+2.a+2
# G+ DWpg g * (G # DU, (pp + (G + 1(Gy + DUy gl (a4
[ p(e) £ g, dxdy = ab p(t) when r = 3 = ]
=0  othervise ' (A5)
bra
- [ Fryy® xrxfr8 gdxdy = abl (B )1 +(B,)2] - ]
1
2(n+a)2 Aj(n+s) - (n+8-2)2 A (n+s-2) -
(m+1)2 | (n+s+2)2 A)(n+s+2) - 2(n-8)2 A (n-s) +
L(n-rl-l)2 Ay (n-8+2) + (n-s-2)2 Ay (n-s~2) |
Ehv* O
16 °. “m [ ]
3, 2(n+s)2 Ap(n+s) - (n+s-2)2 Ay(n+s-2) -
H(m=1)2 |(n+s+2)2 A,(n+s+2) - 2(n-2)2 Ay(n-s) +
(n-8+2)2 A)(n-8+2) + (n-8-2)2 Ay(n-s-2)
[(e+1)2 + (r-1)2] » (W, ga2 * Wy gy QDU )+ '
Phw2h (r+1)2 [ +1)W - W - W ] +
S N l r+2,8 r+2,8+2 r+2,8-2
-1)2 - -
|(e=102 QN (= Wy g = Wy 4] ] a8
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APPENDIX B
GENERALIZED EQUIVALENT LINEAR STIFFNESS MATRIX (K] EL
The elements of the equivalent linear stiffness matrix are derived from

the expression

aﬂr'
Keoij * ¢ [Wx—j.]

(Bl)

The function a" is associated with the integrals after applying the
Bubnov-Galerkin approach to the equation of motion in deflection, and it can

be expressed as the sum of five subfunctions as

-b_ (b ra _
Bre ab ‘£ ‘[ (r’yy"'xx * D"xx"”yy 21?’xy"’m:y)fr:guad":dy
- (3")1 + (Sr')z + (Br.)3 + (B“)s (B2)

The equivalent linear stiffness matrix will consist of five submatrices

[x]EL - [K]1 + [Klz + [K]3 + [K]4 + [1(]5 (B3)
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The elements of the submatrices are given as the following

(Kui.j)1 -

%%Egzé {G+ D2{2¢§ + D20 (] +8) =-(j+e- 2)20(§ + 8 - 2)
b
-(j +8 + 2)2A1(j +8+2)-2(j~- s)zAl(j - 8)

+(G-s+220(i-8+2)+(j-8-22%(-s-2)]
+ (1= 120205 + 8)28(3 + 8) = (5 + 8 =2)28(j +8 - 2)

= (J+ s+ 220+ 8+ 2) 20 - 8)2,(5 - 8)

+(j-0+228(j-0+2) +(j-s-220(~8-2)]

+Z22 ((m+ 1)2[2(n + s)zA (n+8)~(n+s - Z)ZA;(n +8-2)
m n
~(n + 8 + 2)2A;(n +8+2) - Z(n-s)zA;(n—u)

+ (n=-8+ Z)ZA;(n -8+ 2 +(n-3s-~ Z)ZA;(n -8 =2)]
+ (m-1)2[2(n + s)zA;(n +8) -(n+3s - 2)2A£(n +8 - 2)
“-(n+s + 2)2A£(n + 8+ 2) - 2n - s)zA;(n - 8)

+ (n-8+ 2)2A;(n “8+2)+(n-38-~ 2)2A£(n -8 -21)}

; Eh272 au(W )
Ktlij)z - -m {( FE[I (w )] +—€[Ix(wm)] ‘5'—-—"
2
‘”‘ (—e[z (W, )u(w )
+ Lglz G0 i )1)) (B5)
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b

) Lo iz ) i) (B6)

: (K yiys :‘.‘2" {(1-1)(G-1) [ (i) Ag (i40) = | i=r | Ag (imr)

R | ~(1or=2)Ag (L+r=2)+ | i-r=2| Ag (i=r=2)]

( +(1=1)(§+1) [ (i+r)Ag (i+r)=|i-r|Ag (i-r)

| =(i+r-2)Ag (i+r=2)+|i-r=2|Ag (i-r=2)]

B | +(+1) (31) [(L+r) Ag (i+0)= | -z | Ag (=)

’g | =(itr+2)Ag(i+r+2)+|i-r+2|Ag(i-r+2)]

f +(1+1) (J+1) [ (i+7) Ag (ir)= | ior | Ag (i-0)

‘;3 =(itr+2)Ag (i+r+2)+|i-r+2|Ag(i-r+2)]

; + f. ﬁ ((m—l)(n—l)[(mr)A (m+r)- Im-rIA (m-1)

-(m+r-2)A; (m+r=2)+|m-r-2| Al (m-r-2)] |
> +(m-1)(n+1)[(mo-t)As'(mr)-Im-rIAS'(m-r) ‘
f -(m+r-2)A6' (m+r-2)+|m=-r=-2| AG' (m-r-2)] !
N +(m+1)(a=1) [(o+r)A' (m+r)~|m~r |A' (m-1) ‘
g . =(m+r+2)A’ (:+r+2)+ Im—r+ZTA' (m-r+2)] :
f . +(m+1)(n*l)[(m+r§A;(m+r)-Im-rIAG'(tsn-r) E
3 -<m+=+z>A;(m+r+z>4 |m=r+2 lAs'(m—r+2)] )}
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u(wr.

vW_) = [(s+1)2 + (s=1)2] (W

A ()

Ay (d)

Ag ()

A6 (d)

(F.)

£'pq

WO AR B

e o o o T oA i

) = [(r+1)?

+

(r-l)zl(H;..+2 "
(l""l)z [(°1 +1) Wr

wl.‘..

+

+2,8 " ¥

-1)2 ‘ -
(-1 [ e W, = W

+

+2,8

(s+1)2[(Cy+1) W

+

¢ -2 G W, o =W, L, -
- C(i +r ¢+ 2)(F€)i'.'r'.'2.d + C(i‘r)(FE)i"r d
SC ) (B, g = ClU-r+ D)0y

O + 1 = DB, o4 = O = ©)(F),

cﬁ%:ﬂ%) - C(i =r - 2)(F

i+r,d

= (j+a)(Fy) + Ij-l-ZI(FE)

d,j+s
-(j+a*2)(F£)

d,j~s-2
dpj".-z - Ij"" I (FE )d.j".

= (e(F)y Ly * 502 (R o,

'(5*5*2)(F5)d,j+s+2 - '5"|(F5)d,j-s

.-t zrrcs
mn 1

E(W w1
(p? /a+q2a)? k

pqunkl” " ‘mn k1
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L")
] - L] -
. Az(d) - ’-Ti-j- aC(m+r-2)7F wr=2,d +.C(m r) !‘;‘r.d
- C(m + r) r;ﬂ-,d ~Cm=-r=-2)F ner=2,d (B16)
[
IAg
' - - - -
. A'(d) o (nn)!‘ém" + |n-s 2|1"d'.n_'__2
{ -(nﬂ-z)r"l.n“_z - |n=s|p, o (B17)
o 34g
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;:&E“‘v AG (d) rw_i:i— (n",)rc'l.nH L "2'?&.:1—.*-2
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, 1
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- {2 for g = 1
1 foraesvl

~ 2 forrm])
@ 1] forcwi

2fork =0
) = {} gor k # 0 .

W =0 for m or n < 1 (B21)
mn

and [wmn wk1] is the covariance matrix of the generalized displacements.

The diagonal terms of [whn wkl] are the mean-square displacements win.

Expression for (Kruij)3 which is similar to (Krsij)l has algo been

derived.
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